12th Stem Cell Research Symposium

The First Day: Friday, May 30 The Second Day: Saturday, May 31 Poster Discussion **Oral Presentation Oral Presentation** Poster Discussion 9.00 9.00 9:00~9:10 **Opening Remarks** 9:00~9:45 Session 5 9:10~10:25 **Stem Cell and Cancer Metabolites** Chair : Issay Kitabayashi Session 1 Hematopoietic Stem Cells (1) 9:45~10:45 Chair : Atsushi Iwama 10:00 10:00 Session 6 Leukemia Stem Cells (1) Chair : Mineo Kurokawa 10:25~11:25 Session 2 10:45~11:00 **Coffee Break** Hematopoietic Stem Cells (2) 11:00 11:00 11.00~12.00 Chair : Yoshiaki Sonoda Session 7 11:25~11:40 Leukemia Stem Cells (2) **Coffee Break** Chair : Hiromi Iwasaki 11.40~12.25 Session 3 Niches for 12:00 12:00-12:00~12:45 Hematopoietic Stem Cells **Korea-Japan Bilateral Session** Chair : Fumio Arai Chair : Shigeru Chiba 12:25~13:45 12:45~13:30 Poster -13:00 13.00Poster Lunch Time Lunch Time Session Session 13:30~14:15 Session 8 13:45~14:45 Cancer Stem Cells (1) 14:00 14:00Chair : Tetsuya Taga Session 4 iPS / ES Cells 14:15~15:00 Chair : Kinichi Nakashima Session 9 Cancer Stem Cells (2) Chair : Noriko Gotoh 14:45~15:45 15:00 15:00 **Special Session on** 15:00~15:15 **Coffee Break** iPS / ES Cells 15:15~16:00 Chair : Takafumi Kimura Session 10 Tissue Stem Cells (1) Chair : Atsushi Suzuki 15:45~16:00 **Coffee Break** 16:00 16.0016:00~16:35 16:00~16:45 Session 11 Keynote Lecture (1) Kristen Kroll Chair : Shin' ichiro Yasunaga Tissue Stem Cells (2) Chair : Daisuke Sugiyama 16:35~17:10 Keynote Lecture (2) 16:45~17:00 **Closing Remarks Ř**. Keith Humphries -17:00 17:00-Chair : Koichi Akashi 17:10~17:45 Keynote Lecture (3) **Michele Pagano** Chair : Toshio Suda 17:45~17:55 **General Meeting** 17:55~ 18.00 18:00 Reception (Venue for Poster Presentation) 19:0019:00

The 12th Stem Cell Research Symposium Program

Friday, May 30. The First Day

Registration • Exhibit posters

8:30~

Opening RemarksOrganizerYoshihiro Takihara9:00~9:10(Department of Stem Cell Biology, Research Insitute for Radiation Biology and
Medicine, Hiroshima University)

Session 1 : Hematopoietic Stem Cells (1) $9: 10 \sim 10: 25$

Chair Atsushi Iwama

(Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University)

- O-1 WDR68 is critical for maintenance of long-term hematopoietic stem cells <u>Miu Adachi</u> (Division of Hematological Malignancy, National Cancer Center Research Institute)
- O-2 Pot1 regulates hematopoietic stem cell activity during aging

<u>Kentaro Hosokawa¹</u>, Yoshiko Ikushima², Benjamin MacArthur³, Toshio Suda², Fumio Arai¹ (¹Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, ²Department of Cell Differentiation, School of Medicine, Keio University, ³Faculty of Medicine & School of Mathematics, University of Southampton)

- O-3 Clock gene *Bmal1* is dispensable for intrinsic properties of murine HSCs <u>Aki Ieyasu</u>, Satoshi Yamazaki, Hiromitsu Nakauchi (Laboratory of Stem Cell Therapy, Center for Experimental Medicine, the Institute of Medical Science, the University of Tokyo)
- O-4 The role of Prdm16 in hematopoietic stem cell function <u>Kenjiro Kamezaki¹</u>, Koichi Akashi¹, Hans Snoeck² (¹Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, ²Columbia Center for Translational Immunology, Columbia University Medical Center)
- O-5 Identification and functional analysis of self-renewing hematopoietic stem cells by using Geminin-EYFP knock-in mice <u>Shin'ichiro Yasunaga¹</u>, Yoshinori Ohno¹, Kyoko Suzuki-Takedachi^{1,} Toshiki Kurogi¹, Mimoko Santo¹, Motoaki Ohtsubo^{1,2}, Yoshihiro Takihara¹ (¹Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, ²Department of Food

and Fermentation Science, Beppu University)

Session 2 : Hematopoietic Stem Cells (2)

10:25~11:25

Chair Yoshiaki Sonoda

(Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University)

 O-6 Cord blood-derived CD34-negative hematopoietic stem cells (HSCs) are myeloidbiased HSCs residing at the apex of the human HSC hierarchy <u>Yoshikazu Matsuoka¹</u>, Keisuke Sumide¹, Masaya Takahashi², Ryusuke Nakatsuka¹, Tatsuya Fujioka¹, Yutaka Sasaki¹, Yoshiaki Sonoda¹ (¹Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, ²Department of Pediatrics, Kansai Medical University)

O-7 CD133 is a positive marker of human cord blood-derived CD34-negative hematopoietic stem cells

<u>Masaya Takahashi¹</u>, Yoshikazu Matsuoka², Keisuke Sumide², Ryusuke Nakatsuka², Tatsuya Fujioka², Yutaka Sasaki², Kazunari Kaneko¹, Yoshiaki Sonoda² (¹Department of Pediatrics, Kansai Medical University, ²Department of Stem Cell Biology and Regenerative Medicine, Kansai Medical University)

O-8 Embryonic hematopoietic progenitors migrate through muscle before homing to bone marrow

<u>Yuka Tanaka^{1,2}</u>, Tomoko Inoue³, Kasem Kulkeaw³, Yanagi Chiyo¹, Senji Shirasawa², Yoichi Nakanishi¹, Daisuke Sugiyama³ (¹Center for Clinical and Translational Research, Kyushu University Hospital, ²Department of Cell Biology, Faculty of Medicine, Fukuoka University, ³Department of Research and Development of Next Generation Medicine, Kyushu University Faculty of Medical Sciences)

O-9 Inhibitory effect of Spred1 on self-renewal activity mediated by cell-cell interaction determines size of hematopoietic stem cell pool

<u>Yuko Tadokoro¹</u>, Takayuki Hoshii¹, Kazuhito Naka², Koji Eto³, Hideo Ema⁴,Satoshi Yamazaki⁵, Akihiko Yoshimura⁶, Hiromitsu Akauchi⁵, Atsushi Hirao¹ (¹Division of Molecular Genetics, Cancer Research Institute, KanazawaUniversity, ²Exploratory Project on Cancer Stem Cells, Cancer ResearchInstitute, Kanazawa University, ³Department of Clinical Application,Center for iPS Cell Research and Application (CiRA), Kyoto University,⁴Department of Cell Differentiation, School of Medicine, Keio University,⁵Division of Stem Cell Therapy, Center for Stem Cell Biology andRegenerative Medicine, The Institute of Medical Science, The Universityof Tokyo, ⁶Department of Microbiology and Immunology, Keio University School of Medicine)

Coffee Break

11:25~11:40

Session 3 : Niches for Hematopoietic Stem Cells

11:40~12:25

Chair Fumio Arai

(Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University)

O-10 NG2⁺ arteriolar pericytes form niches for dormant hematopoietic stem cells <u>Yuya Kunisaki^{1,2}</u>, Dachuan Zhang², Toshihide Mizoguchi², Aviv Bergman³, Paul Frenette² (¹Kyushu University Department of Medicine and Biosystemic Science, ²Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research Albert Einstein College of Medicine, ³Department of Systems and Computational Biology, Albert Einstein College of Medicine)

- O-11 Role of Oncostatin M in the bone marrow microenvironment for hematopoiesis <u>Fumi Sato¹</u>, Minoru Tanaka², Atsushi Miyajima¹ (¹Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, ²Laboratory of Stem Cell Regulation, Institute of Molecular and Cellular Biosciences, The University of Tokyo)
- O-12 The niche factor Angiopoietin-1 regulates stem and progenitor cell numbers by controlling hematopoietic stem cell division asymmetry

<u>Yoshiko Ikushima¹</u>, Ben D. MacArthur², Patrick S. Stumpf², Kentaro Hosokawa^{1,3}, Toshio Suda¹, Fumio Arai^{1,3} (¹Department of Cell Differentiation, School of Medicine, Keio University, ²Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, School of Mathematics, and Institute for Life Sciences, University of Southampton, ³Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University)

Lunch Time /Poster Session

12 : 25~13 : 45 13 : 45~14 : 45

Session 4 : iPS/ES Cells

Chair Kinichi Nakashima

(Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyushu University)

O-13 Lactic acid bacteria-derived materials convert human fibroblasts to multipotential cells

<u>Kunimasa Ohta,</u> Rie Kawano, Naofumi Ito (Kumamoto University)

- O-14 Search of machinery for efficient reversion from EpiSC to ESC-like cell <u>Hideyuki Murayama</u> (The Institute of Medical Science, University of Tokyo)
- O-15 Generation of a mouse model capable of visualizing pluripotent cells in Nanogexpressing cells

<u>Maiko Terada¹</u>, Sayaka Sekiya¹, Atsushi Suzuki^{1,2} (¹Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, ²Core Research for Evolutional Science and Technology (CREST)) O-16 iPS cells show hypersensitivity to X-irradiation than isogenic somatic cells, leading to p53-dependent apoptosis

<u>Harunobu Kagawa¹</u>, Hidehiko Kawai², Tetsushi Sakuma³, Takashi Yamamoto³, Bunshyou Shiotanⁱ¹, Akira Shimamoto¹, Hidetoshi Tahara¹ (¹Department of Cellular and Molecular Biology, Graduate School of Biomedical Science, and Health, Hiroshima University, ²Department of Regulatory Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, ³Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University)

Special Session on iPS/ES Cells

14:45~15:45

Chair Takafumi Kimura

(Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University)

O-17 Strategies for manufacturing and banking of clinical-grade human embryonic stem cell lines

<u>Tsuneo Takahashi</u> (The Institute for Frontier Medical Sciences, Kyoto University)

O-18 Autologous transplantation of iPS cell-derived neurons to the brain of non-human primate

<u>Asuka Morizane¹</u>, Daisuke Doi¹, Tetsuhiro Kikuchi¹, Jun Takahashi^{1,2,3} (¹Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, ²Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, ³Department of Neurosurgery, Kyoto University Graduate School of Medicine)

O-19 Regeneration of immune cells for immunotherapy <u>Shin Kaneko</u> (Shin Kaneko Laboratory, CiRA, Kyoto University)

Coffee Break

Keynote Lecture (1)

Chair Shin'ichiro Yasunaga

(Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University)

K-1 Epigenetic regulation of embryonic cell fate selection

<u>Kristen L. Kroll, Ph.D.</u>, Elizabeth Caronna, Dhananjay Yellajoshyula, Ethan S. Patterson, Matthew Elitt, Pamela M. Hummert (Department of Developmental Biology, Washington University School of Medicine, Saint Louis)

16:00~16:35

15:45~16:00

Keynote Lecture (2)

16:35~17:10

Chair Koichi Akashi

(Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University)

K-2 Targeting self-renewal function of normal and leukemic hematopoietic stem cells

R. Keith Humphries, M.D., Ph.D.

(Terry Fox Lab, BC Cancer Agency, Vancouver)

Keynote Lecture (3)

17:10~17:45

Chair Toshio Suda

(Department of Cell Differentiation Keio University, School of Medicine)

K-3 SCF ubiquitin ligase complexes regulate modular elements of molecular machines

Michele Pagano, M.D., Ph.D.

(Howard Hughes Medical Institute and Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York)

General Meeting

Chief DirectorKoichi Akashi17:45~17:55(Department of Medicine and Biosystemic Science, Faculty of Medicine,
Kyushu University)

Reception(Venue for Poster Presentation)17:55~

Saturday, May 31. The Second Day

Session 5 : Stem Cell and Cancer Metabolites 9 : 00~9 : 45

Chair Issay Kitabayashi

(Division of Hematological Malignancy National Cancer Center Research Institute)

O-20 Critical roles of the IDH2 mutation in development and maintenance of acute myeloid leukemia

<u>Yoko Ogawara¹</u>, Takuo Katsumoto¹, Yukiko Aikawa¹, Yutaka Shima¹, Yuki Kagiyama¹, Tomoyoshi Soga², Hironoroi Matsunaga³, Takahiko Seki³, Kazushi Araki³, Issay Kitabayashi¹ (¹National Cancer Center Research Institute, ²Institute for Advanced Biosciences, Keio University, ³R&D Division, Daiichi Sankyo Co., ltd)

O-21 MicroRNA-369 dictates glucose metabolism and cell differentiation of pluripotent stem cells by splicing PKM2

<u>Masamitsu Konno¹</u>, Nobuhiro Tanuma², Hiroshi Shima², Noriko Gotoh³, Yuichiro Doki⁴, Masaki Mori⁴, Hideshi Ishii¹ (¹Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, ²Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, ³Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, ⁴Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine)

O-22 Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells

<u>Nobuaki Shiraki¹</u>, Yasuko Shiraki², Tomonori Tsuyama^{1,3}, Fumiaki Obata^{4,5}, Masayuki Miura^{4,5}, Genta Nagae⁶, Hiroyuki Aburatani⁶, Kazuhiko Kume^{1,7}, Fumio Endo², Shoen Kume^{1,3} (¹Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, ²Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, ³Program for Leading Graduate Schools "HIGO", Kumamoto University, ⁴Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, ⁵CREST, Japan Science and Technology Agency, ⁶Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, ⁷Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University)

Session 6 : Leukemia Stem Cells (1)

9:45~10:45

Chair Mineo Kurokawa

(Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo)

O-23 Treatment with Hedgehog inhibitor, PF-913, attenuates leukemia-initiation potential in AML cells

<u>Yosuke Minami¹</u>, Nobuaki Fukushima², Tomoki Naoe³ (¹Kobe University Hospital, ²Nagoya University School of Medicine, ³National Hospital Organization Nagoya Medical Center) O-24 BAALC promotes leukemogenesis by balancing MEK/ERK-dependent proliferation with KLF4-derived differentiation block

<u>Ken Morita¹</u>, Yosuke Masamoto¹, Yuki Kagoya¹, Keisuke Kataoka¹, Junji Koya¹, Hideki Yashiroda², Tomohiko Sato¹, Shigeo Murata², Mineo Kurokawa¹ (¹Department of Hematology & Oncology, Graduate School of Medicine, the University of Tokyo, ²Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo)

O-25 Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCRABL1 inhibition

> <u>King Pan Ng^{1,8,}</u> Aditi Manjeri¹, Kian Leong Lee², Weijie Huang¹, Soo Yong Tan³, Charles T H Chuah^{1,4}, Lorenz Poellinger^{2,6}, S Tiong Ong^{1,4,5,7}

(¹Cancer and Stem Cell Biology Signature Research Program, Duke– NUS Graduate Medical School, Singapore, ²Cancer Science Institute of Singapore, National University of Singapore, ³Department of Pathology, Singapore General Hospital, ⁴Department of Haematology, Singapore General Hospital, ⁵Department of Medical Oncology, National Cancer Centre, Singapore, ⁶Department of Cell and Molecular Biology, Karolinska Institutet, Sweden, ⁷Department of Medicine, Duke University Medical Center, Durham, NC., ⁸Present address: Cancer Science Institute of Singapore, National University of Singapore)

O-26 Disruption of quiescence by p57 ablation confers oncogene addiction on leukemia stem cells through altered microenvironmental regulation

<u>Shoichiro Takeishi</u>, Akinobu Matsumoto, Keiichi I. Nakayama (Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University)

Coffee Break

10:45~11:00

Session 7 : Leukemia Stem Cells (2)

11:00~12:00

Chair Hiromi Iwasaki

(Center for Cellular and Molecular Medicine, Kyushu University Hospital)

- O-27 Leukemia-associated mutations of DNMT3A inhibit differentiation of hematopoietic stem and leukemic cells via aberrant recruitment of Bmi1 Junji Koya, Keisuke Kataoka, Takako Kishino-Tsuruta, Tomohiko Sato, Mineo Kurokawa (Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo)
- O-28 Dominant negative EZH2 promotes myeloid tumorigenesis in mouse BMT model <u>Kimihito C Kawabata</u>, Daichi Inoue, Jiro Kitaura, Toshio Kitamura (Institute of Medical Science, the University of Tokyo)

O-29 Loss of p53 induces leukemic transformation in a murine model of JAK2 V617Finduced polycythemia vera <u>Takako Tsuruta-Kishino</u>, Keisuke Kataoka, Junji Koya, Hiroshi Kobayashi, Kensuke Narukawa, Tomohiko Sato, Mineo Kurokawa (Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo)

O-30 TIM-3, a leukemia stem cell marker, plays a role in leukemic transformation through autocrine stimulatory signaling by its ligand, galectin-9 <u>Yoshikane Kikushige</u>, Junichiro Yuda, Takahiro Shima,

Toshihiro Miyamoto, Koichi Akashi (Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine)

Korea-Japan Bilateral Session

12:00~12:45

Chair Shigeru Chiba

(Department of Hematology, Faculty of Medicine, University of Tsukuba)

KJ-1 Functional regulation of stem cells and embryos by cell-penetrating peptide (CPP)-conjugated recombinant proteins

Dong Ryul Lee, Soomin Hong, Ning Jie Yang, Junghyun Jo (Department of Biomedical Science, CHA University, Seoul, Korea)

KJ-2 Molecular integration of hoxB4 and STAT3 for self-renewal of hematopoietic stem cells: a model of molecular convergence for stemness

<u>Il-Hoan Oh, MD, Ph.D</u>

(Department of Medical Lifescience, Catholic University of Korea, Seoul)

KJ-3 Studies for applying human ES/iPS cell cultures to therapeutic development of Parkinson's disease

Sang-Hun Lee, M.D., Ph.D.

(Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul)

Lunch Time /Poster Session

12:45~13:30

13:30~14:15

Session 8 : Cancer Stem Cells (1)

Chair Tetsuya Taga

(Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU))

O-31 Discrimination of mutations arising in pre-malignant cells and those in lymphoma cells in angioimmunoblasitc t-cell lymphoma

<u>Mamiko Sakata-Yanagimoto,</u> Shigeru Chiba (Department of Hematology, University of Tsukuba)

O-32 All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia

<u>Keichiro Mihara¹,</u> Tetsumi Yoshida¹, Tatsuji Mino¹, Yoshihiro Takihara², Tatsuo Ichinohe¹

(¹Department of Hematology/Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, ²Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University) O-33 Hypoxia-induced noncoding ultraconserved transcripts in cancer

 <u>Naohiro Nishida¹</u>, Jana Ferdin², Mircea Ivan³, George Calin⁴, Masaki Mori⁵, Hideshi Ishii¹
(¹Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, ²Department of Animal Science, Biotechnical Faculty, University of Ljubljana,
³Department of Medicine, Indiana University School of Medicine,
⁴Department of Experimental Therapeutics, MD Anderson Cancer Center, ⁵Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine)

Session 9 : Cancer Stem Cells (2)

14:15~15:00

Chair Noriko Gotoh

(Division of Cancer Cell Biology Cancer Research Institute, Kanazawa University)

O-34 Activation of the canonical Wnt signaling pathway and enhancement of the tumorigenicity of breast cancer stem cells by microRNA-142

<u>Vohei Shimono¹</u>, Taichi Isobe², Shigeo Hisamori³, Michael Clarke⁴ (¹Kobe University, Graduate School of Medicine, ²Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, ³Kyoto University, Graduate School of Medicine, ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University)

O-35 Plasticity of CD44⁺ colorectal cancer stem cells depends on TGF-beta-induced epithelial mesenchymal transition (EMT): evidences from an *ex vivo* culture system

<u>Michitaka Nakano¹</u>, Hiroshi Ariyama¹, Yuta Okumura¹, Shingo Tamura¹, Kohta Miyawaki¹, Taichi Isobe¹, Hitoshi Kusaba¹, Takashi Ueki², Eishi Baba¹, Koichi Akashi¹ (¹Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, ²Departement of Surgery and Oncology, Kyushu University Graduate School of Medical Science)

O-36 Understanding of C6 glioma cancer stem cell niche with the use of synthetic polymers

<u>Tetsuya Taga,</u> Kouichi Tabu (Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU))

Coffee Break

15:00~15:15

Session 10 : Tissue Stem Cells (1)

Chair Atsushi Suzuki

(Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University)

O-37 FBXL12 targets ALDHs for degradation in trophoblast stem cells to induce Differentiation

<u>Keiichi I. Nakayama</u> (Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University)

15 : 15~16 : 00

O-38 The Lin28/let-7 axis regulates proliferation of hepatoblasts

<u>Yasuo Takashima¹</u>, Maiko Terada¹, Atsushi Suzuki^{1,2} (¹Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, ²Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency)

O-39 Establishment of the gene transduction into the primary intestinal organoid identified the subpopulation of the stem cells in a crypt

<u>Nobukatsu Horita</u>¹, Kiichiro Tsuchiya², Ryohei Hayashi¹, Keita Fukushima¹, Shuji Hibiya¹, Masayoshi Fukuda¹, Yoshihito Kano1, Tomohiro Mizutani¹, Yasuhiro Nemoto¹, Shiro Yui¹, Ryuichi Okamoto², Tetsuya Nakamura², Mamoru Watanabe¹ (¹Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, ²Department of Advanced Therapeutics for Gastrointestinal Diseases, Tokyo Medical and Dental University)

Session 11 : Tissue Stem Cells (2)

16:00~16:45

Chair Daisuke Sugiyama

(Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University)

O-40 Cell motion predicts epidermal stemness

<u>Daisuke Nanba¹</u>, Fujio Toki¹, Sota Tate², Matome Imai², Natsuki Matsushita³, Hiroshi Toki⁴, Shigeki Higashiyama¹, Yann Barrandon⁵ (¹Proteo-Science Center, Ehime University, ²Graduate School of

Medicine, Ehime University, ³Translational Research Center, Ehime University Hospital, ⁴Research Center for Nuclear Physics, Osaka University, ⁵Laboratory of Stem Cell Dynamics, Ecole Polytechnique Federale de Lausanne)

O-41 Defective maintenance of COL17A1 in hair follicle stem cells orchestrates hair follicle aging

<u>Hiroyuki Matsumura,</u> Yasuaki Mohri, Nguyen Thanh Binh, Hironobu Morinaga, Emi Nishimura (Department of Stem Cell Medicine, Medical Research Institute Tokyo Medical and Dental University)

O-42 Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation

<u>Hiroyuki Nobusue^{1,2}</u>, Nobuyuki Onishi¹, Takatsune Shimizu³, Eiji Sugihara¹, Yoshinao Oki², Yuko Sumikawa², Tatsuyuki Chiyoda¹, Koichi Akashi⁴, Koichiro Kano², Hideyuki Saya¹ (¹Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, ²Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, ³Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, ⁴Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science)

Closing Remarks

16:45~17:00

Next Organizer Issay Kitabayashi

(Division of Hematological Malignancy National Cancer Center Research Institute)

Poster Session

Session 1: Hematopoietic Stem Cells

P-1 Ezh2 is required for the maintenance of developmental stage-specific functions of hematopoietic stem cells

<u>Motohiko Oshima¹</u>, Satoru Miyagi¹, Shuhei Koide¹, George Russel Wendt¹, Yutaka Suzuki², Atsushi Iwama¹ (¹Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, ²Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo)

P-2 Stem cell factor enhances generation of hematopoietic progenitors from human pluripotent stem cells

<u>Seok-Ho Hong^{1,3}</u>, Borim An^{1,3}, Se-Ran Yang^{2,3} (¹Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, ²Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, ³Stem Cell Institute, Kangwon National University, Chuncheon, Korea)

 P-3 FGF7 supports hematopoietic stem/progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells <u>Satowa Tanaka¹</u>, Ruri Ishino¹, Azusa Imanishi¹, Masaya Yano¹, Keiji Matsui¹, Kaori Minami¹, Mami Nagai², Natsumi Hasegawa¹, Shigetaka Asano³, Mitsuhiro Ito⁴
⁽¹Kobe University Graduate School of Health Sciences, ²Waseda University, ³Waseda University, Kobe University Graduate School of Medicine, ⁴Kobe University Graduate School of Health Sciences/Medicine, Rockefeller University)

- P-4 Prospective isolation of human erythroid lineage-committed progenitors
 <u>Yasuo Mori^{1,2}</u>, Jun Seita², James Chen², John Pluvinage²,
 Koichi Akashi¹, Irving Weissman²
 (¹Department of Medicine and Biosystemic Science, Graduate School
 of Medical Sciences, Kyushu University, ²Institute for Stem Cell
 Biology and Regenerative Medicine, Stanford University, CA, USA)
- P-5 Geminin regulates transcription via chromatin remodeling to govern cellular proliferation and differentiation

<u>Voshinori Ohno¹</u>, Shin'ichiro Yasunaga¹, Toshiaki Kurogi¹, Kyoko Suzuki-Takedachi¹, Mimoko Santo¹, Motoaki Ohtsubo², Yoshihiro Takihara¹ (¹Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, ²Department of Food and Fermentation Science, Beppu University)

P-6 A novel approach for identification of hematopoietic stem cell population by nucleostemin promoter activity <u>Mohamed A.E. Ali,</u> Takayuki Hoshii, Yuko Tadokoro, Masaya Ueno, Kazuhito Naka, Atsushi Hirao (Division of Molecular Genetics, Cancer Research Institute, Kanazawa University) P-7 EED, a non-catalytic subunit of PRC2, plays an essential role in maintenance of adult hematopoietic stem cells

<u>Kenichiro Ikeda</u>, Takeshi Ueda, Hiroaki Honda (Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University)

P-8 Establishment and genetic analysis of bone marrow mesenchymal cell clones supporting proliferation of CD34⁺ umbilical cord blood cells

<u>Tetsumi Yoshida¹</u>, Keichiro Mihara¹, Tatsuji Mino¹, Dario Campana², Yoshihiro Takihara³, Tatsuo Ichinohe¹ (¹Department of Hematology/Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, ²Department of Pediatrics, National University of Singapore, ³Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University)

- P-9 Eset regulates energy metabolism in hematopoietic stem and progenitor cells <u>Shuhei Koide¹</u>, Keiyo Takubo², Motohiko Oshima¹, Satoru Miyagi¹, Shogo Yabata¹, George Wendt¹, Toshio Suda², Atsushi Iwama¹ (¹Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, ²Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine)
- P-10 Antibody-free flow cytometric analysis of zebrafish neutrophil by DNA-binding DRAQ5 dye and lectin

<u>Kasem Kulkeaw¹</u>, Tomoko Inoue¹, Kanitta Srinoun², Tohru Ishitani³, Yuka Tanaka¹, Keai Sinn Tan¹, Takaaki Kanemaru⁴, Daisuke Sugiyama¹ (¹Center for Clinical and Translational Research, Kyushu University Hospital, ²Faculty of Allied Health Sciences, Prince of Songkla University, Thailand, ³Division of Cell Regulation Systems, Department of Post-Genome Science Center, Medical Institute of Bioregulation, Kyushu University, ⁴Morphology Core Unit, Kyushu University Hospital)

P-11 Histone acetyltransferase MORF is essential for maintenance of hematopoietic stem cells

<u>Takuo Katsumoto,</u> Issay Kitabayashi (Hematological Malignancy Division, National Cancer Center Research Institute)

P-12 The herbal drug ninjin'yoeito accelerates myelopoiesis but not erythropoiesis in vitro

<u>Tomoko Inoue¹</u>, Kasem Kulkeaw¹, Kanitta Muennu^{1,2,3}, Yuka Tanaka^{4,5}, Yoichi Nakanishi⁵, Daisuke Sugiyama¹ (¹Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, ²Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, ³Faculty of Medical Technology, Prince of Songkla Univers, ⁴Department of Cell Biology, Faculty of Medicine, Fukuoka University, ⁵Center for Clinical and Translational Research, Kyushu University Hospital) P-13 Three-dimensional analysis of hematopoietic development in the mouse embryonic head

<u>Kazuhide Iizuka</u>¹, Tomomasa Yokomizo¹, Motomi Osato², Tomoiku Takaku¹, Norio Komatsu¹ (¹Department of Hematology, Juntendo University School of Medicine, ²Cancer Science Institute of Singapore, National University of Singapore)

P-14 The pro-phagocytic calreticulin on hematopoietic stem cell in the pathogenesis of JAK2 non-mutated myeloproliferative neoplasms

<u>Shinya Daitoku</u>, Katsuto Takenaka, Takuji Yamauchi, Ayano Yurino, Fumiaki Jinnouchi, Kohta Miyawaki, Koichi Akashi (Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences)

P-15 Jmjd3, a histone demethylase, is required for the functional integrity of hematopoietic stem cells in mice

<u>Yuichiro Nakata,</u> Takeshi Ueda, Norimasa Yamasaki, Hiroaki Honda (Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University)

P-16 Embryonic spleen niche accelerates erythropoiesis through SCF and IGF-1 secretion

<u>Keai Sinn Tan^{1,2}</u>, Tomoko Inoue-Yokooc¹, Kasem Kulkeaw¹, Wai Feng Lim², Sarinthip Preedagasamzin¹, Yuka Tanaka³, Mei I Lai², Daisuke Sugiyama^{1,3} (¹Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, ²Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia, ³Center for Clinical and Translational Research, Kyushu University Hospital)

P-17 The generation of *Runx1* enhancer, eR1(+24m), driven CreERT2 transgenic mice for hematopoietic stem cells-specific gene targeting, imaging and transgenesis <u>Cai Ping Koh</u>, Chelsia Qiuxia Wang, Cherry Ee Lin Ng, Linsen Du, Zakir Hossain, Motomi Osato (Cancer Science Institute of Singapore, National University of Singapore)

Session 2: Leukemia and Cancer Stem Cells

P-18 Transcription factor Lhx2 inhibits proliferation of T-cell acute lymphoblastic leukemia-derived cells

<u>Kazuya Miyashita^{1,2}</u>, Kenji Kitajima¹, Takahiko Hara^{1,2} (¹Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, ²Graduate School of Tokyo Medical and Dental University)

- P-19 Autophagy activated by TIM-4-AMPK α interaction suppresses chemotherapyinduced antitumor immunity <u>Muhammad Baghdadi</u>, Masahisa Jinushi (Hokkaido University Institute for Genetic Medicine)
- P-20 C6 glioma SP and MP cells have different metabolism on the ALA-PpIX-heme pathway: an implication for self-creating cancer stem cell niche

<u>Wenqian Wang¹</u>, Kouichi Tabu¹, Yuta Sugiyama², Yuichiro Hagiya², Shun-ichiro Ogura², Tetsuya Taga¹ (¹Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), ²Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology) P-21 Heterogeneity within CD204⁺ tumor-associated macrophages induced by C6 glioma stem cells

<u>Yasuhiro Kokubu</u>, Kouichi Tabu, Nozomi Muramatsu, Yoshitaka Murota, Ryosuke Kimura, Tetsuya Taga (Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU))

P-22 CD74-NRG1 is a potential oncoprotein that promotes cancer stem cell properties <u>Takahiko Murayama^{1,2,}</u> Takashi Nakaoku³, Koji Tsuta^{4,} Masato Enari⁵, Tatsunori Nishimura¹, Kana Tominaga¹, Asuka Nakata^{1,6}, Arinobu Tojo⁷, Sumio Sugano², Takashi Kohno³, Noriko Gotoh^{1,6} (¹Division of Molecular Therapy, Molecular targets laboratory, Institute of Medical Science, University of Tokyo, ²Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, ³Division of Genome Biology, National Cancer Center Research Institute, ⁴Pathology Division, National Cancer Center Research Institute, ⁵Division of Refractory Cancer Research, National Cancer Center Research Institute, ⁶Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa University, ⁷Division of Molecular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo)

P-23 Insulin-like growth factor regulates breast cancer stem cell properties Kana Tominaga¹, Teppei Shimamura², Kunihiko Hinohara¹, Hiroaki Fukuda¹, Hajime Kanauchi³, Seiichiro Shimizu⁴, Kotoe Nishioka⁵, Ei-ichi Tsuji⁵, Kei-ichiro Tada⁵, Yohei Shimono⁶, Hideshi Ishii⁷, Hideyuki Saya⁸, Masaki Mori⁷, Toshihisa Ogawa⁵, Satoru Miyano², Arinobu Tojo¹, Noriko Gotoh^{1,9} ⁽¹Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, ²Laboratory of DNA Information Analysis, Institute of Medical Science, The University of Tokyo, ³Department of Breast and Endocrine Surgery, Showa General Hospital, ⁴Department of Pathology Diagnosis, Showa General Hospital, ⁵Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, 6Graduate School of Medicine, Kobe University, ⁷Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 8Division of Gene Regulation, Institute for Advanced Medical Research, Graduate School of Medicine, Keio University, 9Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University)

P-24 Novel molecular mechanisms of acquired resistance to gefitinib in lung adenocarcinoma

<u>Asuka Nakata¹</u>, Ryo Yoshida², Rui Yamaguchi³, Mai Yamauchi³, Yoshinori Tamada³, Andre Fujita³, Teppei Shimamura³, Seiya Imoto³, Tomoyuki Higuchi², Masaharu Nomura⁴, Seiji Yano⁵, Satoru Miyano³, Noriko Gotoh^{1,3} (¹Division of Cancer Cell Biology, Cancer Research Institute, KanazawaUniversity, ²The Institute of Statistical Mathematics, ³Institute of MedicalScience, The University of Tokyo, ⁴Tokyo Medical University Hospital,⁵Cancer Research Institute, Kanazawa University) P-25 Maintenance of stemness of breast cancer stem-like cells by FRS2beta, a feedback inhibitor for ErbB, during mammary tumorigenesis

<u>Yukino Machida¹</u>, Daisuke Iejima¹, Anna Mizutani¹, Natsuko Kimura¹, Reiko Sakamoto², Yusuke Inoue³, Nobutaka Kobayashi⁴, Naoki Itano⁴, Arinobu Tojo¹, Nobuaki Yoshida², Ko-ichi Akashi⁵, Hideyuki Saya⁶, Issay Kitabayashi⁷, Noriko Gotoh^{1,8} (¹Division of Molecular Therapy, Institute of Medical Science, University of Tokyo, ²Division of Developmental Genetics, Institute of Medical Science, University of Tokyo, ³Department of Diagnostic Radiology, Kitasato University School of Medicine, ⁴Medical Department, Shinsyu University, ⁵Department of Medicine and Biosystemic Science, Kyusyu University, ⁶Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, ⁷Division of Hematological Malignancy, National Cancer Center Research Institute, ⁸Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University)

P-26 FRS2beta, a feedback inhibitor for EGF receptor/ErbB family, may control malignancy of breast cancer, in association with overexpression of a polycomb protein, Ezh2

<u>Natsuko Kimura¹</u>, Yukino Machida¹, Tatsunori Nishimura¹, Arinobu Tojo¹, Noriko Gotoh^{1,2} (¹Division of Molecular Therapy, Institute of Medical Science, University of Tokyo, ²Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University)

P-27 Sphingosine-1-phosphate induces cancer stem cell proliferation via a Notch ligandindependent Notch activation

<u>Naoya Hirata,</u> Shigeru Yamada, Yuko Sekino, Yasunari Kanda (Div. Pharmacol, NIHS)

Session 3: iPS/ES Cells

P-28 Induction of primordial germ cell-like cells from mouse embryonic stem cells by ERK signal inhibition

<u>Mika Odamoto¹</u>, Tohru Kimura^{1,2,} Hiroshi Ohta³, Keita Fujikawa¹, Ayako Isotani⁴, Katsuhiko Hayashi^{3,5}, Masaru Okabe⁴, Takashi Shinohara⁶, Mitinori Saitou^{3,7}, Tohru Nakano^{2,8} (¹Department of Stem Cell Biology, Kitasato University School of Science, ²Graduate School of Frontier Biosciences, and Department of Pathology, Medical School, Osaka University, ³Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, ⁴Research Institute for Microbial Diseases, Osaka University, ⁵PRESTO, Japan Science and Technology Agency (JST), ⁶Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, ⁷ERATO, JST, ⁸CREST, JST)

P-29 Analysis of tetraploid embryonic stem cells in mice

Hiroyuki Imai^{1,2}, Kiyoshi Kano^{1,2}, Wataru Fujii³, Ken Kusakabe², Yasuo Kiso² (¹Laboratory of Developmental Biology, Joint Faculty of Veterinary Medicine, Yamaguchi University, ²Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, ³Laboratory of Applied Genetics, Graduate School of Agricultural and Life Science, University of Tokyo)

- P-30 In vitro embryotoxicity testing based on human iPS cells
 - <u>Nobuo Aikawa</u>, Atsushi Kunisato, Katsumi Takaba, Kenji Nagao, Kinya Ohgami, Hideaki Kusaka
 - (R&D Division, Kyowa Hakko Kirin Co., Ltd.)
- P-31 Promotion of iPS cell induction by Akt signaling activation <u>Keita Fujikawa,</u> Tohru Kimura (Department of Stem cell Biology, Kitasato University School of Science)
- P-32 Sox17-transduction imparts fetal hematopoietic cells with the myeloid-restricted differentiation potential

<u>Maha Anani¹</u>, Ikuo Nobuhisa¹, Mitsujiro Osawa², Atsushi Iwama³, Kaho Harada¹, Kiyoka Saito¹, Tetsuya Taga¹ (¹Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), ²Clinical Application Department, Center for iPS Cell Research and Application (CiRA), Kyoto University, ³Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University)

- P-33 Improved hematopoietic differentiation of common marmoset embryonic stem cells <u>Takenobu Nii,</u> Tomotoshi Marumoto, Saori Yamaguchi, Hirotaka Kawano, Jiyuan Liao, Kenzaburo Tani (Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University)
- P-34 Role of an atypical Polycomb Repressive Complex 1 (PRC1) involving MBLR and Mga/Max in repressing meiosis-related genes in mouse ES cells <u>Mitsuhiro Endoh,</u> Takaho Endoh, Haruhiko Koseki (RIKEN Center for Integrative Medical Sciences)
- P-35 The Nanog/Zfp57 axis regulates anchorage-independent growth <u>Hiroshi Koide¹</u>, Yuhki Tada¹, Yukari Yamaguchi², Hiroyuki Takamura², Tadayuki Akagi¹, Tetsuo Ohta², Takashi Yokota¹ (¹Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, ²Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kanazawa University)
- P-36 Establishment of disease model using induced pluripotent stem cells derived Niemann-Pick disease type C

Makoto Hamasaki¹, Minami Soga¹, Kaori Yoneda², Kimitoshi Nakamura², Muneaki Matsuo³, Tetsumi Irie⁴, Fumio Endo², Takumi Era¹ (¹Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, ²Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, ³Department of Pediatrics, Saga University, Faculty of Medicine, ⁴Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University)

P-37 Visualization and characterization of Tbx18 positive cells, derived from mouse ES cells

<u>Natsumi Nakazawa</u>, Nobuhito Ikeda, Yasuaki Shirayoshi, Ichiro Hisatome (Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University) P-38 Treatment approach for HPP via genetically modified patient's iPS cells and iPSMSCs

<u>Yasuaki Oda¹, </u>Mika Tadokoro², Shunsuke Yuba², Hajime Ohgushi², Takeshi Taketani³, Takumi Era¹

(¹Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, ²Tissue Engineering Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, ³Division of Blood Transfusion, Shimane University Hospital)

Session 4: Tissue Stem Cells and others

P-39 Therapeutic effects of human umbilical cord-derived mesenchymal stem cells in experimental stroke

<u>Jihwan Song²</u>, Seung-Hun Oh¹, Jeong-Eun Roh², Chunggab Choi², Yongwoo Jeong², Nayeon Lee², Da-Jeong Chang², Iksoo Jeon², Hyun Sook Kim¹, Youngjun Lee³, Yong-Soo Choi³, Ok-Joon Kim¹ (¹Department of Neurology, CHA Bundang Medical Center, CHA University, Gyeonggi-do, Korea, ²CHA Stem Cell Institute, Department of Biomedical Science, CHA University, Seoul, Korea, ³Department of Applied Bioscience, CHA University, Seongnam-si, Korea)

- P-40 Evaluation of stem cell characteristics of murine bone-derived small cells <u>Ryusuke Nakatsuka</u>, Ryuji Iwaki, Yoshikazu Matsuoka, Keisuke Sumide, Tatsuya Fujioka, Yutaka Sasaki, Yoshiaki Sonoda (Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University)
- P-41 Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds

<u>Tohru Kimura¹</u>, Keita Fujikawa¹, Mika Odamoto¹, Masahito Ikawa², Kuniya Abe³, Toru Nakano⁴ (¹Department of Stem Cell Biology, Kitasato University School of Science, ²Research Institute for Microbial Diseases, Osaka University, ³RIKEN BioResource Center, ⁴Graduate School of Frontier Biosciences, Medical School, Osaka University)

P-42 Transcriptional regulatory networks underlying reprogramming of spermatogonial stem cells to pluripotent states

<u>Kye-Seong Kim¹</u>, Jinhyuk Bhin², Hyung Joon Kim³, Hoe Su Jeong¹, Dong Ryul Lee³, Daehee Hwang^{2,4,5} (¹Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea, ²Department of Chemical Engineering, POSTECH, Pohang, Korea, ³Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea, ⁴School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea, ⁵Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Korea) P-43 TLR9 signaling in microglia suppresses seizure-induced aberrant neurogenesis in the adult hippocampus

Taito Matsuda¹, Naoya Murao^{1,2}, Yuki Katano^{1,2}, Berry Juliandi^{1,3}, Shizuo Akira^{4,5}, Taro Kawai⁶, Kinichi Nakashima¹ (¹Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, ²Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), ³Department of Biology, Bogor Agricultural University, Bogor, Indonesia., ⁴Laboratory of Host Defense, World Premier International Immunology Frontier Research Institute for Microbial Diseases, Osaka University, ⁶Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, NAIST.)

P-44 Analysis of mechanisms underlying neurogenesis in the adult hippocampus regulated by hemimethylated DNA recognition factor, Np95/Uhrf1
<u>Naoya Murao^{1,2}</u>, Taito Matsuda¹, Haruhiko Koseki³, Masakazu Namihira⁴, Kinichi Nakashima¹
(¹Stem cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, ²Laboratory of Gene Expression Research, Graduate School of Biological Science, NAIST, ³Developmental Genetics, Riken Research Center for Allergy and Immunology, ⁴Neuroscience Research

P-45 Development of a new method for the simultaneous integration of multiple vectors

Institute, AIST)

into human/mouse artificial chromosome <u>Teruhiko Suzuki¹</u>, Manami Kawaguchi¹, Mitsuo Oshimura^{2,3}, Takahiko Hara¹ (¹Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, ²Department of Biomedical Science,Graduate School of Medical Sciences, Tottori Uniersity, ³Chromosome Engineering Research Center, Tottori Uniersity)

P-46 The investigation on possibility of existence of endothelial stem-like cell population in kidney

<u>Keitaro Yamane</u> (Department of signal Transduction, Research Institute for Microbial Diseases, Osaka University)

P-47 Functional analysis of MeCP2, the Rett syndrome responsible factor, in neural stem cells

<u>Hideyuki Nakashima,</u> Keita Tsujimura, Koichiro Irie, Kinichi Nakashima (Stem Cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University)

P-48 Dual roles of cyclin D1 in self-renewal of neural stem cells: promotion of cell proliferation and inhibition of glial differentiation

<u>Norihisa Bizen</u>¹, Toshihiro Inoue², Takeshi Shimizu³, Koichi Tabu¹, Tetsushi Kagawa¹, Tetsuya Taga¹ (¹Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), ²Department of Ophthalmology, Faculty of life Sciences, Kumamoto University, ³Division of Neurophiology and Bioinformatics, National Institute for

³Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences)